Semi-automatic parametrization of social context cognition model (for personality and affect generation)

Jaroslaw Kochanowicz
Tan Ah Hwee
Daniel Thalmann
Original Problem

Personality models like ‘Big Five’ attribute features (e.g. openness, conscientiousness, extraversion, agreeableness, and neuroticism) that remain static over all contexts

But in fact, those features change significantly!
- difference between contexts = difference between people
- 50-50 person-situation rule
Psychological framework and proposed model

- mediating units
- very little detail

Solution: social Context based Personality (SCP)
- specification of CAPS
- connectionist model of social context cognition
New personality

24th Annual Conference on Computer Animation and Social Agents (CASA 2013)
Problem with the developed characters

Complex. Many parameters.

How do we get good parameters?

Solution: offline crowdsourcing of the social context cognition
Literature study: crowdsourcing affective and socio-cognitive data

-VidL, a distributed video-labeling tool specifically designed for labeling affective data.

-‘Guess What?’ game crowd-sourcing affective video data labeling of social situations.

System often have problems with ‘no objective ground-truth’
- the agreement between the subjects is low,
- this reflects the subjective, culture variant elements

Serious differences to SCP
- SCP extracts precisely the above interpretation differences
- SCP not only probes labels, but also their quantitative relations

There is no real parallel system to compare against
Method overview

Domain specific sample preparation
- selection to reflect domain
- preprocessing (relevant labeling: ‘ball’ etc.)
- initial set feature selection

Obtaining parameters
- discrete (mediating unit labels)
- continuous (degree of their presence)

Parameter processing
- correlation/link estimation
- duplicate elimination

SCP generation
Some details, duplicate merging

Duplicate merging procedure
- when are the two terms identical? ‘Football player’ vs ‘goalkeeper’
- domain dependent, not lexical!
- calculate correlations between mediating units, e.g:

\[
C_{AP, RC}(ap, rc) = \sum_{a \in A} \frac{V_{AP}(ap,a,q) \cdot V_{RC}(rc,a,q)}{\sqrt{U_{AP}(ap) \cdot U_{AC}(ac)}}
\]

\[
U_X(x) = \sum_{QA(n) \in QA_X(x)} \frac{V_X(x, n)^2}{QA(n) \cdot QA_X(x)}
\]

- calculate the differences in correlation patterns
- propose merging when c. patterns of two terms < proximity tolerance
- system designer knows the domain, has the last call
Some details, feature evaluation

Feature evaluation
- use percepts to estimate features in linear regression:

\[
\tilde{V}_{SF}(f, s) = \sum_{p \in OP} (\alpha(p, f) + \beta(p, f)V_{OP}(p, s))
\]

\[
\beta(p, f) = \frac{\sum_{QA(n) \in Q_{AF}(f)} \frac{V_{OP}(p, n) \cdot \tilde{V}_{SF}(f, n)}{\sum_{QA(n) \in Q_{AF}(f)} V_{OP}(p, n)^2}}{2D_{SC, SF}(c, f)^2}.
\]

\[
\alpha(p, f) = \bar{p} - \bar{f} \cdot \beta_{SP, SF}(p, f)
\]

- compare human data with SCP’s output:
- difference between the two estimates feature quality (feature and component errors)

\[
E_{SF}(f) = \sum_{QA(n) \in Q_{AF}(f)} \frac{\tilde{V}_{SF}(f, n) - \tilde{V}_{SF}(f, n)}{|QA_{AF}(f)|}
\]

\[
E_{SC}(c) = \sum_{QA(n) \in Q_{SC}(c)} \frac{\tilde{V}_{SC}(c, n) - \tilde{V}_{SC}(c, n)}{|QA_{SC}(c)|}
\]
Testing

Domain: family life and sport. Facial expressions analyzed using emotion extraction software and used as percepts.

Test included 50 preprocessed samples, 10 subjects.

System obtained:
- 18 role components (auto-merged to 9)
- 11 situation components (auto-merged to 7)
- 8 group components (auto-merged to 6)

Validation of feature and component ‘errors’:

a) in training samples. e = 0.19, 0.12 (sd = 0.08, 0.03)
b) in unused samples e = 0.27, 0.19 (sd = 0.07, 0.03)
 avr. human error: e = 0.16, 0.13
c) SCP performance under data stream: e = 0.25, 0.22 with (sd = 0.08, 0.03)

- in trained samples: similar to humans
- in unused samples: decent performance for components. Features are harder.
- under stream of data: system is stable, potentially usable for social agents
Problem of static-personality issue was presented.

Socio-cognitive model was discussed and its shortcomings discussed.

Semi-automatic socio-cognitive model parametrization method was presented.

Validation shows promise, but issues with features must be addressed.
Thank you!