Modeling fiber anisotropy in multiscale musculoskeletal soft tissues

Hon Fai Choi

MIRALab, University of Geneva, Switzerland
choi@miralab.ch
Introduction

Anatomical modeling

Static evaluation:
geometry, volumes, ...

MIRALab, University of Geneva
www.miralab.ch

IMI - NTU research seminar Singapore,
June 17th, 2014
Introduction

Anatomical modeling → Static evaluation: geometry, volumes, ...

Tissue structure modeling → Mechanical response: elasticity, anisotropy,

Physical simulations → Dynamic evaluation: deformation, articulation, ...
Introduction

- Fiber architecture important determinant for function:

Muscles:
- force and moment generating capacity

Connective tissue:
- tensile strength
- weight bearing
- joint stability

\[
\mathbf{F} \times \mathbf{r} = \frac{\partial l}{\partial \theta}(t)
\]

MIRALab, University of Geneva

www.miralab.ch

IMI - NTU research seminar Singapore,
June 17th, 2014
Motivation

• Medical images provide geometry for anatomical models:

• How to incorporate internal fiber structure?

http://people.fmarion.edu/tbarbeau
Motivation

- Measurement anatomical fiber arrangements

 Cadaver dissection
 - Expensive, invasive
 - usually not 3D
 - Sparse measurements
 - Translation to subject-specific models?

 Ultrasound
 - Mostly planar measurements
 - limited scan depth

 [HCK11]

 DT-MRI
 - Noisy data
 - Fiber tracing not robust
 - Only works for muscles

 [BLD07]

 [KBK10]
Motivation

- Medical images provide geometry for anatomical models:
- How to incorporate internal fiber structure?

Computational approaches to generate plausible representations

http://people.fmarion.edu/tbarbeau
Related work

- Variety of computational methods proposed

Muscles:
- Action lines
- Template warping

Ligaments/menisci:
- Centerline + diffusion gradient
- Hexahedral mesh

References:

MIRALab, University of Geneva
www.miralab.ch

IMI - NTU research seminar Singapore,
June 17th, 2014
Related work

- Multitude of methods not practical for medical applications

Research question

- Multitude of methods not practical for medical applications
- Common approach possible?
 - Fiber architecture is similar across tissues:
 - Ordering in bundles running between attachments

Muscles

Ligament, tendon

(www.rheumatologynetwork.com)

Meniscus

(en.wikipedia.org)

(ubcmedicalart.wordpress.com)
Laplacian Method

- Generation fiber orientations based on physical properties:

\[\nabla \cdot \vec{v} = 0 \]
\[\nabla \times \vec{v} = 0 \]

Laplacian Method

Finite Element (FE) solver

Laplace equation
\[\Delta \cdot \phi = 0 \]

Finite Volume (FV) solver

\[\hat{v} = - \sum_i f_i / nV \]

\[t_i = -x_i / \hat{v}_i \]

Stress and strain

FE simulations of deformation

Not robust

Robust

trajectory tracing

Application in muscles

\[\Delta \phi = 0 \]

Application in muscles

• Extended approach:
 – muscles with internal tendon

\[\Delta \cdot \phi = 0 \]

- Awkward surface geometry
- Difficult to mesh

\[\Delta \cdot \phi = f \]

- Modify equation to indicate tendon with source term
- Difficult meshing avoided
Application in connective tissues

Meniscus: Multiple fibers

Apply in different directions:

Δ · φ = 0

Simulations of knee displacement

Anterior Cruciate Ligament

Lateral Collateral Ligament

Lateral meniscus

Experiments

With fibers

Isotropic
Application in connective tissues

Comparison with OpenKnee model:

OpenKnee Laplacian

\[\mathbf{f}_1 \leftrightarrow \mathbf{f}_2 \]

\[\cos(\mathbf{f}_1 \cdot \mathbf{f}_2) \]

Conclusions

- A Laplacian based approach provides a feasible collective methodological basis for multiscale tissues

 - Advantages:
 - Equation based = reproducible
 - Templates, parameter tuning avoided
 - Fast linear solvers available
 - Independent of mesh topology
 - Multiple attachments

 - Limitations:
 - Dependency on boundary conditions

Further validations needed when experimental data are more available
Conclusions

• Impact on computer assisted intervention applications:
 – Simulations of mechanical behavior soft tissue
 • Incorporating fiber anisotropy needed for accurate simulation
 – A collective method for fiber modeling provides a practical strategy for implementation with broad range of usability.
 – Important applications:
 • Predictive deformation modeling for surgical planning
 • Simulations for surgical training in arthroscopy (still isotropic tissues in simulators)

Thank you for your attention

Acknowledgements:

• Prof. Dr. Nadia Magnenat – Thalmann (Supervisor, MSH project coordinator)

• All members of MIRALab, University of Geneva

• Institute for Media Innovation, Nanyang Technological University

MultiScaleHuman project
• European FP7 Marie Curie Actions, Initial Training Networks
• ITN-2011-289897
• multiscalehuman.miralab.ch