Computational Episodic Memory for Intelligent Agents

Juzheng Zhang, Jianmin Zheng, Nadia Magenet Thalmann

School of Computer Engineering

21/03/2013
Background

- Tulving E. (1972)
 - “Episodic memory is a system that receives and stores information about temporally dated episodes or events, and temporal-spatial relations among them.”
- Relations with Semantic Memory
 - Distinction: Knowing (fact) vs. Remembering (experience)
 - Connection:
Introduction

- **Data Structure**
 - The episodes are constituted by sequence of events, and each event contains several attributes.
Related Works

• Current Trends
 – AI ---> Improve agent performance by learning
 – HCI/HRI ---> Enhance believability of communication

• Main methods
 – Database
 – Sparse Distributed Memory [D'Mello et.al 05]
 – Bayesian Network [Kadlec & Brom 13]
 – Neural Network [Subagdja et.al 12]
 – Connectionist Model [Lim et.al 11]
Issues for Previous works

1. Few works consider the semantic meaning in episodic memory encoding and retrieval
 – Benefits
 • Synonymy & Polysemy Example
 • Enhance the encoding of information Example

2. Few works build metric space to easily figure out the relations among episodes (get similarity)
Our Work

• Goal
 – Find the general relations among episodes, events and attributes,
 – Arrange episodes based on these relations.
 – Realize functionalities such as encoding, storage, retrieval, reconstruction, forgetting…
Our Framework

- **Cue**
- **New Episode**
- **Training Episodes**
- **External Semantic Knowledge**

Memory Space

- **Episodes**
 - EP_1, EP_2, ...

- **Event Layer**
 - EV_1, EV_2, ..., EV_n

- **Attributes**
 - Sub, DirObj, IndirObj, Time, Loc, ...

STM (WM)

- **Reconstruction**
- **Storage**
- **Retrieval**
- **Forgetting**

LTM

- **Retrieval**
- **Forgetting**

Clustering
Training & Encoding

• Method
 – Build event space (ev & attr) ⟷ SVD
 – Cluster events ⟷ AP
 – Build episode space (ep & ev) ⟷ SVD
 – Cluster episodes ⟷ AP

	Ev1	Ev2	Ev3	Ev4	Ev5	...
Sub=Jack	2	2	0	0	2	
Pre=give	4	0	4	0	0	
Loc=school	1	1	0	1	0	
dirObj=book	1	0	1	0	1	
indirObj=Tom	1	1	0	0	0	
Sub=Tom	0	0	2	2	0	
...						

Entry

• Give important attributes larger weights
• Important attributes are easy to be remembered correctly
• Depends on the purpose
Training & Encoding

- **Method**
 - Build event space (ev & attr) → SVD
 - Cluster events → AP
 - Build episode space (ep & ev) → SVD
 - Cluster episodes → AP

<table>
<thead>
<tr>
<th></th>
<th>Ev1</th>
<th>Ev2</th>
<th>Ev3</th>
<th>Ev4</th>
<th>Ev5</th>
<th>..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub=Jack</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pre=give</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Loc=school</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dirObj=book</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>indirObj=Tom</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sub=Tom</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SVD

\[TSD' \]

Dimension reduction

\[T_1 S_1 D_1' \]

coordinates

\[Attr = T_1 S_1 \]

\[Ev = D_1 S_1 \]
Event Space
Training & Encoding

• Method
 – Build event space (ev & attr) → SVD
 – Cluster events → AP
 – Build episode space (ep & ev) → SVD
 – Cluster episodes → AP

	Ev1	Ev2	Ev3	Ev4	Ev5	...
Sub=Jack	2	2	0	0	2	..
Pre=give	4	0	4	0	0	..
Loc=school	1	1	0	1	0	..
dirObj=book	1	0	1	0	1	..
indirObj=Tom	1	1	0	0	0	..
Sub=Tom	0	0	2	2	0	..

Affinity Propagation
• Automatically select the number of clusters
• The results are independent of the initial points

\[TSD' \]
\[T_1 S_1 D_1' \]
Dimension reduction
coordinates
\[Attr = T_1 S_1 \]
\[Ev = D_1 S_1 \]
Training & Encoding

Method
- Build event space (ev & attr) → SVD
- Cluster events → AP
- Build episode space (ep & ev) → SVD
- Cluster episodes → AP

<table>
<thead>
<tr>
<th></th>
<th>Ep1</th>
<th>Ep2</th>
<th>Ep3</th>
<th>Ep4</th>
<th>Ep5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>EC2</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EC3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>EC(n)</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EC(n+1)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- First and last few events have larger entries
- Middle events have smaller entries
- Based on serial-position effect

Entry
Training & Encoding

Method

- Build event space \((ev \ & \ attr) \rightarrow SVD\)
- Cluster events \(\rightarrow AP\)
- Build episode space \((ep \ & \ ev) \rightarrow SVD\)
- Cluster episodes \(\rightarrow AP\)

<table>
<thead>
<tr>
<th></th>
<th>Ep1</th>
<th>Ep2</th>
<th>Ep3</th>
<th>Ep4</th>
<th>Ep5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EC2</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EC3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>EC(n)</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EC(n+1)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Affinity Propagation
- Automatically select the number of clusters
- The results are independent of the initial points

\[
ESP' \downarrow \quad \text{Dimension reduction}
\]

\[
E_1 S_1 P_1'
\downarrow \quad \text{coordinates}
\]

\[
Ev = E_1 S_1
\]

\[
Ep = P_1 S_1
\]
Training & Encoding

• **Method**
 – Build event space (ev & attr) → SVD
 – Cluster events → AP
 – Build episode space (ep & ev) → SVD
 – Cluster episodes → AP

• **Benefits**
 – Spaces are constructed by main features
 – Relations are easily computed (dot product)
 – Similar episodes are arranged together
Clustering & Storage

<table>
<thead>
<tr>
<th>Time</th>
<th>Pointers for Ep-Coords</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/21</td>
<td>0x00128</td>
</tr>
<tr>
<td>05/20</td>
<td>0x01217</td>
</tr>
<tr>
<td>05/19</td>
<td>0x01731</td>
</tr>
</tbody>
</table>

Time List

Time-based Retrieval

Cue-based Retrieval

Exemplar 1 Exemplar 2 ... Exemplar n

Memory Stack
Reconstruction & Forgetting

- **Reconstruction**
 - Episodes and events can be reconstructed from their coordinates

- **Forgetting**
 - Full forgetting: remove less used episodes
 - Partial forgetting: remove unimportant details (reduce dimension)
Implementation

• **Platform**
 – UT2004 + Pogamut 3
 – DeathMatch1v1

• **Goal**
 – Improve the performance of the agent

• **EM Functionalities**
 – Weapon selection (weapon + distance → effect)
 – Items pick up (item → location)
Implementation

• Platform
 – Nadine

• Data
 – Generated by probabilistic pattern (To be improved)

• Goal
 – Enhance believability

• EM Functionalities
 – Encoding, Storage, Retrieval

• Drawbacks
 – Unnatural setting and languages
Thank You!