Customize garment pattern for made-to-measure

Ph.D Candidate Zhang Yuzhe
Supervisor Assoc Prof. Jianmin Zheng
Co-supervisor Prof. Nadia Magnenat Thalmann
2013-11
Outline

• Introduction
• Prior work
• Garment customization method
• Experiments
• Summary
Introduction

My PHD Project

Body model → Adaptation → Preposition → Simulation → Made-to-Measure → Flatten → 2D garment → Flatten → Made-to-Measure → 3D garment

For Virtual Try on

For Manufacture
Problem statement

- **Input:**
 - 2D garment composed of 2D patterns
 - 3D body model
- **Output:**
 - 2D patterns suitable for input body
- **Goal**
 - According to measures of body
 - Less force and pressure of garment on body
Motivation

- Fit customer → made-to-measure

- Facilitate design procedure
- Manufacturing
Prior work

- **Developable surface based approach** [Huang12] [Meng12]
 - Input: body embed with features
 - Process: sketches of garment
 - Output: 3D garment surface + flattened 2D patterns
 - Drawbacks
 - Have to redesign for each body model
 - Difficult to locate darts and seams

Prior work

• **Transfer based approach** [Meng&Wang12][Brouet12]
 – Input: standard garment on reference body + target body
 – Output: transfer onto target body while optimizing shape features
 – Advantage:
 • Formulate 3D grading criteria
 – Disadvantage:
 • Not consider feature of 2D pattern

Challenges

• For developable surface modeling
 – Curvature = 0 → Non-linear
 – How to linearize developability optimization

• For manufacturing
 – Consider feature of 2D patterns
 – How to formulate 2D grading criteria
Proposed workflow

Input

Sketch features

Pre-fitting & Simulation

3D Garment customization

2D Pattern Flattening

Output
Pre-fitting & Simulation

• **Pre-fitting**
 – Extract measurements of body
 – Position patterns on body
 – Fitness evaluation
 – Roughly scale 2D patterns
 • Follow original design
 • Ready to suit for body

• **Simulation → an initial 3D garment surface**
3D customization

- Sketch some features
 - Tight part
 - Loose part
 - Feature curve
- Find a new 3D garment that
 - Interpolate sketched features
 - Preserve feature of 3D garment and 2D patterns
3D optimization for customization

- Optimize: \(\text{argmin} \left(w_S E_S + w_D E_D + w_B E_B + w_I E_I \right) \)

- Shape preservation
 - Laplacian

- Developability
 - Linearize using the property that normals on Gaussian sphere form a continuous curve

- Boundary
 - Boundary curves own similar 2nd difference

- Fidelity
 - Interpolate features
2D Pattern flattening

- Apply ABF++[Sheffer05] to obtain an initial guess.
- Perturb initial 2D patches to achieve:
 - Boundary smoothness
 - Lengths of seam pairs are equal
 - Adapt darts and seams if necessary
 - Consider material parameter

[Sheffer05] Alla Sheffer et al. “ABF++: fast and robust angle based flattening”, TOG, 2005
Experiments

• **Evaluate**
 – Force: warp and weft (F/m)
 – Pressure of garment on body (F/m²)

• **Four cases:**
 – Skirt
 – Pant
 – T-shirt
 – Dress
Experiments (Case1: Skirt)

Original garment

Customization

Customized garment

Less force & Less pressure

Force Pressure

Force Pressure
Experiments (Case2: Pant)
Experiments (Case 3: T-shirt)
Experiments (Case 4: Dress)

Original garment

Customization

Customized garment
Summary

• A new formulation of garment pattern customization
 – 3D optimization model
 – New linearization strategy using the normal criterion of developable surfaces
 – More features considered

• On progress
 – 2D pattern flattening
 – Comparison with prior art
 – Comprehensive evaluation
Thank you!