Interaction with Virtual Human: Analysis and Prediction of Body Gestures using A Depth Sensor

Flavien Picon, Research Fellow
Supervisor(s): Pr. Nadia Magnenat-Thalmann
PhD Seminar
06 November 2012
Interaction with Virtual Human and Social Robot

- Human presence
- Speech
- Gesture
- Lighting + time of day
- Noise
- Furniture

Introduction
Motivation
Analysis of characteristics
On-line prediction

PhD Seminar – November 2012
Human actions, source of meaning

• Different kind of gestures:
 – Commands:
 • to control a system
 • restricted vocabulary, learning
 – Actions:
 • Walking, drinking, reading, using phone
 – Communication:
 • Sign language
 • gesticulation: body motion that support the speech
 • Emblems
 • (Facial expression)

Social context and autonomy => Focus on actions and communication
Gesture recognition

- Large variety of solution:
 - Hand/body tracking
 - Segmentation of human (data glove, electromagnetic tracking)
 - Extraction of features
 - Recognition
 - Template Matching
 - Classifiers
 - HMM

Gesture recognition

• Traditionally:
 – Few research on high-interactive gesture recognition
 • Annotation of videos
 [Laptev, Learning realistic human actions from movies, Computer Vision and Pattern Recognition, 2008]
 – Researchers focus on accuracy
 [Alon, A unified framework for Gesture Recognition and Spatiotemporal Gesture Segmentation, Transactions of Pattern Analysis and Machine Intelligence, 2009]
 • Current ChaLearn gesture challenge
• Two goal towards new action recognition:
 – Characterizing the action to understand human state of mind
 • Analysis of motion characteristics
 – Reducing recognition time for on-line use
 • Early gesture recognition
Analysis of motion characteristics
Analysis of motion characteristics

• Motion characteristics

• Application
 – Human state of mind (excitation, tiredness)
 – Medical assessment
 – “game” interaction
Analysis of motion characteristics

• Common gesture recognition
 – Extraction of numerous features
 – Based on Images and/or Skeleton
 – Learning models on these numerous features
 ➢ No precise study of each feature

• Speed:
 – Main characteristic of motion
 – Important role as feature for gesture recognition

[Yoon, Hand gesture recognition using combined features of location, angle and velocity, Pattern Recognition, 01]
[Rehm, Wave Like an Egyptian – Accelerometer Based Gesture Recognition for Culture Specific Interactions, British HCI, 08]
• Goal: classify motion speed

• Hand Motion
 – Raising hand motion
 – 10 subjects
 – 3 categories (slow, medium, fast)
 – 10 trials per subject and category

• Compare different features
 – Use classification error
Example: data collection for different speeds

• Filtered and oriented of 45 degrees
Performance over 300 motions

Non Filtered

Filtered

SD of hand instantaneous acceleration

Motions

0 50 100 150 200 250 300

0 10 20 30 40

Fast Medium Slow

Misclassifications
Results

Step	Filtered																														
		Hand	Wrist	Elbow	Shoulder																										
		speed	accel																												
1	12.7	10.7	46.3	10.7	14.7	12.0	47.0	13.0	20.0	21.3	48.0	20.3	43.0	46.3	37.3	38.3															
2	12.7	10.0	43.3	10.0	14.7	12.7	46.0	11.3	20.0	21.3	47.3	20.3	43.3	46.7	36.7	38.7															
3	12.0	10.0	41.7	9.3	14.7	12.7	44.0	12.0	19.3	21.3	46.3	19.3	43.3	46.7	36.3	37.7															
4	11.3	10.7	40.7	9.3	14.0	12.7	42.7	11.3	18.7	22.0	45.7	18.7	42.7	46.0	35.3	37.0															
5	10.7	10.7	40.3	8.7	14.0	12.7	42.7	10.7	17.3	21.3	44.3	16.7	42.7	46.0	35.7	36.0															
6	10.0	12.0	40.0	8.0	13.3	13.3	40.7	10.7	16.7	22.0	44.0	17.3	42.3	45.3	34.7	35.0															
7	10.0	12.0	38.3	8.7	12.0	14.0	40.3	10.0	17.3	22.0	42.0	16.0	42.7	45.3	33.7	35.0															
8	10.0	12.7	38.3	9.3	11.3	15.3	40.0	9.3	17.3	22.0	41.7	16.7	42.0	45.3	32.0	35.0															
9	10.0	13.3	36.0	10.0	10.7	17.3	37.0	10.7	17.3	22.0	39.0	18.0	42.0	45.3	31.3	35.7															
10	9.3	16.0	33.7	10.7	10.7	18.0	34.7	10.0	17.3	23.3	34.0	18.7	42.0	45.7	32.0	38.0															

- Accuracy per joint
- Speed vs. Acceleration
- Standard deviation vs. Average.
- Resampling
- Filtered vs. Non filtered
Training the Virtual Human

- Optimizing the threshold for accurate detection of hand movement
“Challenging the Virtual Human”
Conclusion

• Acceleration based feature
• Good accuracy of Non filtered gestures without low pass filter
 ➢ speed up the decision making of the VH

• Future work:
 – Investigate other characteristic
 – Correlation with subject characteristics (age/height)
 – Improve early detection of characteristic
Gesture recognition in interactive time
Gesture recognition in interactive time

• Reduce recognition time
 – Observational latency vs. Computational latency
• Detect gesture based on the first few instant of a movement
Gesture recognition in interactive time

• Motion extrapolation
 [Hasegawa, Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator, ACM Computers in Entertainment, 06]

• Progressive block matching for dancing
 [Tang, Interactive Dancing Game with Real-time Recognition of Continuous Dance Moves from 3D Human Motion Capture, International Conference on Ubiquitous Information Management and Communication, 11]
Gesture recognition in interactive time

• Reducing observational latency
 [Masood, Measuring and Reducing Observational Latency when Recognizing Actions, International Conference on Computer Vision Workshops, 2011]
 – Limited features to position in frames
 – Better than baseline. Feature based only on distance between joints
 – No need for temporal segmentation

• Similarities
 – Classify on sliding window

• We take dynamic of motion into consideration
 – Add temporal segmentation
 – Reducing threshold
Gesture recognition

• Recording of gesture samples: 8 gestures, 3 different starting points, ~50 samples per gestures*starting point
• Gesture filtering
• Computation of features: speed, acceleration, main direction of movement
• Training SVM classifier and observing accuracy
Preliminary Results

• Trained SVM:

<table>
<thead>
<tr>
<th>All trajectory</th>
<th>10 first relevant frames (0.33s)</th>
<th>5 first relevant frames (0.16s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~98%</td>
<td>~92%</td>
<td>~80%</td>
</tr>
</tbody>
</table>

➢ Trained classifier accuracy drops on different users
 – Add features to classifier, add more training data
 – Improve detection of movement starting point
Preliminary Results

• On speed classification using best feature:
Gesture prediction

• Conclusion:
 – Early detection has potential
 – More robust features
 – More training data

• Future work
 – Evaluation of dynamics in features
 – Compare with State of Art
 – Compare with HMM
Questions
Data collection include jittering effect

- Jittering is effect of joint occlusion
Two Examples of Filtering impact on Inst. Speed and Inst. Acc

- Correcting sensor errors (Butterworth low pass filter)
Comparison between filtered and non-Filtered (45 degree)

Non Filtered

Filtered
Joints comparison

- Motion at medium speed
- Instantaneous speed of Hand Joint
• Hand & Wrist: similar amplitudes and low frequencies.
• Elbow: Similar characteristics but lower amplitudes
Joints comparison

- Instantaneous speed of Hand Joint
- Relevance according to joint
Joints comparison

- Shoulder: Very small amplitudes
- Q2: Are Hand and Wrist joints more relevant?
Pre-Selection of Features

- Initial study
- Features based on speed looks promising
- Features based on acceleration less relevant

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>NON FILTERED ERROR IN %</th>
<th>FILTERED ERROR IN %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD Speed Wrist</td>
<td>10.33</td>
<td>1.33</td>
</tr>
<tr>
<td>SD Speed Hand</td>
<td>6.33</td>
<td>2</td>
</tr>
<tr>
<td>Avg Speed Hand</td>
<td>5.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Avg Speed Wrist</td>
<td>6.67</td>
<td>3.33</td>
</tr>
<tr>
<td>Motion Time</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Global speed (hand)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SD Accel Wrist</td>
<td>43.33</td>
<td>15.33</td>
</tr>
<tr>
<td>SD Accel Hand</td>
<td>38.00</td>
<td>16.67</td>
</tr>
<tr>
<td>Straight distance Hand (start position - end position)</td>
<td>32.67</td>
<td>34</td>
</tr>
<tr>
<td>Avg Accel Hand</td>
<td>52.33</td>
<td>37</td>
</tr>
<tr>
<td>Avg Accel Wrist</td>
<td>56.33</td>
<td>41</td>
</tr>
<tr>
<td>AVG angle Elbow</td>
<td>42.33</td>
<td>42.67</td>
</tr>
<tr>
<td>AVG angle vel Elbow</td>
<td>63.33</td>
<td>57.67</td>
</tr>
</tbody>
</table>
Pre-Selection of Features

- Motion time is too motion dependent
- Features based on elbow angle have been discarded

➢ Focus on speed and acceleration
➢ Focus on standard deviation and average

FEATURE

<table>
<thead>
<tr>
<th></th>
<th>NON FILTERED ERROR IN %</th>
<th>FILTERED ERROR IN %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD Speed Wrist</td>
<td>10.33</td>
<td>1.33</td>
</tr>
<tr>
<td>SD Speed Hand</td>
<td>6.33</td>
<td>2</td>
</tr>
<tr>
<td>Avg Speed Hand</td>
<td>5.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Avg Speed Wrist</td>
<td>6.67</td>
<td>3.33</td>
</tr>
<tr>
<td>Motion Time</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Global speed (hand)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SD Accel Wrist</td>
<td>43.33</td>
<td>15.33</td>
</tr>
<tr>
<td>SD Accel Hand</td>
<td>38.00</td>
<td>16.67</td>
</tr>
<tr>
<td>Straight distance Hand (start position - end position)</td>
<td>32.67</td>
<td>34</td>
</tr>
<tr>
<td>Avg Accel Hand</td>
<td>52.33</td>
<td>37</td>
</tr>
<tr>
<td>Avg Accel Wrist</td>
<td>56.33</td>
<td>41</td>
</tr>
<tr>
<td>AVG angle Elbow</td>
<td>42.33</td>
<td>42.67</td>
</tr>
<tr>
<td>AVG angle vel Elbow</td>
<td>63.33</td>
<td>57.67</td>
</tr>
</tbody>
</table>
Results

- Feature Selected: standard deviation of acceleration of hand joint

![Box plots showing acceleration data for different speeds](image-url)
Gesture speed classification

Updates:

• Processing new data => Similar results than Casa paper
 – Range of values are similar
 – Best features are also the same
 – The accuracy seemed better: better pre-processing of the data
Motion speed Classification

- Low pass filter + resampling
 - improves the speed recognition
 - However, more gestures need to be considered
- Good accuracy of Non filtered gestures without low pass filter
 - speed up the decision making of the VH
- Standard deviation of speed or acceleration and average of speed
 - provides similar accuracy rates
Feature clustering

Clapping

Bowing

Shaking hand

Scratching

PhD Seminar – November 2012