RESEARCH ON MULTIMEDIA COMMUNITY-BASED QUESTION ANSWERING

Name: Quan YUAN
School: SCE/IMI
Supervisor: Gao CONG, Nadia Magnenat THALMANN
CONTENT

- Motivation
- Objectives
- Problems and Methodology
- Completed Work
COMMUNITY-BASED QUESTION ANSWERING

- Community-based Question Answering (CQA) is a popular social network that provides a platform for a large number of users to ask, answer and retrieve questions on diverse topics.
- E.g. Yahoo! Answers(YA), Naver, AnswersBag
- Limitation: unitary input modality-text.

- “A picture is worth a thousand words.”
SCENARIO

- A lady is selecting a skirt alone in a shopping mall.
- She is not sure whether it suits her, and turns to CQA for help.

Approach 1

I am a 22-year old girl. I want to buy a skirt for a party. I find a beautiful one but I don’t know whether it suits me. It’s a long black braces skirt with white followers. It can cover my calves. There is a zipper on the back. The skirt is made of silk...
I have long brown hairs and fair skin. I do not wear glasses. I am pretty slender. My style is...

Approach 2

Does it suit me?
OBJECTIVES

- Design a Multimedia Community-based Question Answering
FRAMEWORK

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Classification & Browsing</th>
<th>Retrieval (Text and Image)</th>
<th>Question Pushing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Simulation</td>
<td>Sentiment Analysis</td>
<td>Question Organization</td>
<td>Friend Identification</td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>Opinion Question Identification</td>
<td>Storage & Indexing</td>
<td>User Ranking</td>
</tr>
<tr>
<td>Resolved Questions Data</td>
<td>Other Data Source (Flickr, Wikipedia, User Data)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BROWSING & CLASSIFICATION

- Questions are organized in taxonomy

Objective: Developing a better taxonomy for browsing and classification

Methodology:
- Optimizing taxonomy for text-based questions
- Creating taxonomy for multimedia questions

Which category should I post the question into?
Question Retrieval

- Save time and labor
- **Objective**: Developing a multimedia question retrieval method

Methodology:
- Index
- Identify the data resource
- Efficient Retrieval
 - Text
 - Image
 - Bridge the two

Is there any question about selecting a skirt for party? Has this skirt been asked before?
Pushing Question

Objective: Developing an approach to finding experts and pushing questions.

Methodology:
- Computing users’ expertise
- Profiling friends’ interests
- Ranking
- Pushing the question
 - To users on CQA
 - To friends on other social network like Facebook

The party will start in 1 hour. I can’t wait…
RECOMMENDATION
VIRTUAL TRYING ON

Objective:
- Develop an approach to recommendation and virtually trying on

Methodology:
- Extract features of people and clothes
- Identify the opinion questions
- Analyze the sentiments of answers
- 3D simulation

Is there any better choice? How about the skirt on that girl?
Completed Work

- Learned basic techniques used in CQA.
- Learned some methods of image retrieval.
- Finished a paper—“An automatic approach to optimizing the taxonomy of CQA”
THE TAXONOMY OF CQA AND ITS FUNCTIONS

- Taxonomy is a hierarchical organization of documents/questions.
- Taxonomy is very useful
 - Facilitates browsing;
 - Facilitates categorizing

A small part of taxonomy of Yahoo! Answers (YA)
PROBLEMS OF TAXONOMY OF CQA

Problems:
- Poor Granularity:
 - Coarseness: not specific enough;
 - Over-fine: too detailed.
- Overlap: Not distinct enough

Results:
- Poor classification performance.
- Hard to use.

Our Goal:
Given a taxonomy T, we aim to find a new taxonomy T_n, such that the classification performance of T_n is better than that of T.
RELATED WORK

- <On the merits of building categorization systems by supervised clustering>
- <Automatically learning document taxonomies for hierarchical classification>
- <A practical web-based approach to generating topic hierarchy for text segments>
- <Acclimatizing Taxonomic Semantics for Hierarchical Content Classification>

Weak points: all failed to use existing semantics taxonomy, use external resource and re-construct leaf nodes.
THE APPROACH OF COMPLETE OPTIMIZED DATA HIERARCHY (CODH)

- Project the CQA data on an external hierarchy, and build a new data hierarchy T_e by utilizing this new hierarchy.
- Generate a new taxonomy T_n from T_e and T_c by performing split and merge operations top-down on each level.

Note: we get the external taxonomy from Open Directory Project (ODP)
ORIGINAL TAXONOMIES

L1

C0

L2

C1

C2

L3

C3

C4

C5

d1,d2

d3

d4,d5

Tc

E0

E1

E2

E3

d1,d4

d2,d3, d5

Te
Split

L1

N0

L2

N1

N2

N3

N4

d1

d2,d3

d4

d5

L3

C3

C4

C5

Tn after splitting
Merge

L1

L2

C1E1
C2E2

C1E2

C2E1

L3

C3

C4

C5
UPDATE

L1

L2

C1E 1
C2E 2

L3

N6
N7
N8
N9

d1
d5
d2
d3

C1E 2

C2E 1

N10
d4
Experiments and Results

- **Classification Performance Evaluation:**
 - 405,814 questions from topics *Computer & Internet* and *Sports* of YA.
 - 203,448 descriptions from topics *Computer* and *Sports* of ODP.
 - Corresponding hierarchies of YA and ODP.

- **Coherence and Overlap Evaluation:**
 - 3,810,739 questions from all topics of YA.
 - 1,770,552 descriptions from all of ODP.
 - Hierarchies of YA and ODP.

- **Granularity.**
Baseline Methods

- B1: Bottom Up Clustering (BUC)
- B2: Top Down Cluster using Subcategories (TDCS)
- B3: Hierarchical Acclimatization algorithm (HA)
- B4: Question-based Clustering (QC)
- Our approach: CODH

Table 1. Comparison between Algorithms

<table>
<thead>
<tr>
<th></th>
<th>BUC</th>
<th>TDCS</th>
<th>HA</th>
<th>QC</th>
<th>CODH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use T_c</td>
<td></td>
<td>partial</td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Use T_e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>New leaf</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
CLASSIFICATION AND COHERENCE RESULTS

Table 2. Classification Result

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>BUC</th>
<th>TDSC</th>
<th>HA</th>
<th>QC</th>
<th>CODH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro F1</td>
<td>0.5188</td>
<td>0.5219</td>
<td>0.4792</td>
<td>0.5340</td>
<td>0.5393</td>
<td>0.7965</td>
</tr>
<tr>
<td>Micro F1</td>
<td>0.6391</td>
<td>0.6183</td>
<td>0.5952</td>
<td>0.6336</td>
<td>0.7231</td>
<td>0.8225</td>
</tr>
</tbody>
</table>

Table 3. Coherence Result (The higher the better)

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>BUC</th>
<th>TDSC</th>
<th>HA</th>
<th>CODH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro F1</td>
<td>0.1242</td>
<td>0.1160</td>
<td>0.1042</td>
<td>0.1312</td>
<td>0.2365</td>
</tr>
<tr>
<td>Micro F1</td>
<td>0.3879</td>
<td>0.3673</td>
<td>0.3814</td>
<td>0.3790</td>
<td>0.7592</td>
</tr>
</tbody>
</table>

CODH outperforms baseline algorithms.
No measurement to evaluate the quality of granularity.

We choose three classes and check the results.
Thank you!