Towards Efficient 3D Calibration for Different Types of Multi-view Autostereoscopic 3D Displays

Xinxing Xia¹, Frank Guan², Andrei State³,⁴, Tat-Jen Cham², Henry Fuchs³

¹BeingTogether Centre, Institute for Media Innovation, Nanyang Technological University, Singapore
²School of Computer Science and Engineering, Nanyang Technological University, Singapore
³Department of Computer Science, University of North Carolina at Chapel Hill, USA
⁴InnerOptic Technology Inc., USA
Background and Introduction (3D display)

- Stereoscopic display
 - Binocular parallax
 - Wearing glasses (uncomfortable)
- Glasses-free 3D display
 - Holographic display (phase)
 - Volumetric display (voxel)
 - Multi-view display (rays’ direction)
 - Light field display (rays’ direction)
 - Integral imaging display (rays’ 2D direction both in horizontal and vertical, e.g. similar with random hole display)
Background and Introduction (Calibration)

- Calibration for 3D display
 - Calibration of projection-based light field display
 - 2D calibration of the projecting image on the screen for each projector in sequence
 - Utilization of the rotating CCD camera
 - Calibration of lenticular multi-view display
 - Solve the angular misalignment of the lenticular sheet in front of the LCD
 - Analyze the misalignment based on the geometry

Motivation of the research

• Main drawback of current autostereoscopic displays
 – Crosstalk of different views at different viewing distances
 – Misalignment of the optical and mechanical devices
 – Manufacture and installation error (mechanics and optics)

How to solve get better display for all the viewers?
Motivation of the research

• The motivation of our work
 – From the user end (viewer’s eyes) to get better 3D images
 – To get the correct relationship between the display and the viewing positions
 – Eliminating or reducing the crosstalk or ghosting image for the limited users
Universal 3D calibration for multi-view 3D display (Overview)

- Simplify 3D display to a 2D panel \((M \times N)\)
- Each unit emits rays with \(U \times V\) directions
- Camera locates at the viewpoint

Calibration target:
To get the ray \(L\) from unit \(Q(x, y)\) with the \((u, v)\) direction to hit the camera

- Gray code pattern is to reduce the number of capturing images for this viewpoint from \(M \times N \times U \times V\) to \(\log_2(M \times U) + \log_2(N \times V)\)
Universal 3D calibration for multi-view 3D display

- **Initialization of the camera**
 - Get the camera’s intrinsic parameters

- **Capture at each random sampled position with gray code patterns**
 - Transform the camera location to the display reference (world coordinate) \(X_C \)
 - Get the dataset of the corresponding rays \(L_C(x, y, u, v) \) for this camera position \(X_C \)
 \[
 \{(X_{Ck}, L_{Ck}) | k = 1: K\}
 \]

- **Interpolation for a arbitrary viewpoint** \(X \)
 - Interpolate the corresponding rays \(L(x, y, u, v) \)
 - the camera arbitrary viewpoint \(X \)
Testing of the Calibration Method

- Implementation of the calibration on the commercial 3D display (Alioscopy)

- Implementation of the calibration on the developed 3D display based on directional backlight
Implementation of the calibration method on Alioscopy 3D display

- Alioscopy 3D TV (47”)
 - LCD + lenticular sheet
 - Native resolution: 1080p
 - 8 views
 - Optimized viewing distance: 4.4m
 - Sweet spot width: 52cm (~8 * IPD)

- Sub-pixel arrangement
 - Slanted lenticular lens
 - One lens covers 8 sub-pixels in horizontal direction
Implementation of the calibration method on Alioscopy 3D display

• Experiments
 – Put camera in the optimized viewing distance
 – Use different letters for the 8-view input
 – Capture photos at 8 different views
 • Less crosstalk
Implementation of the calibration method on Alioscopy 3D display

- Experimental results
 - Viewer #1 & #2 (4 eyes) at different depths
 - Viewer #1 (“AB” & “CD”);
 Viewer #2 (“EF” & “GH”);
 - Comparison

- Without calibration, more ghosting
- With calibration, nearly clear image
Implementation of the calibration method on multi-view 3D display based on directional backlight

- **Configuration**
 - Projector
 - LCD
 - Without backlight
 - Optical module
 - Field lens
 - Two vertical diffuser
 - Slanted cylindrical lens array
 - PC
 - Eye-tracking module
 - Kinect v1 or Kinect v2
Principle of the developed multi-view 3D display based on directional backlight

- **Mapping relationship in the design**
 - Ray’s direction is dependent on the projecting pixels from the projector
Implementation of the calibration method on multi-view 3D display based on directional backlight

- Experiment & Result
 - Support two viewers at different distances
 - Put camera at multiple random positions to sample corresponding backlight
 - Interpolate the backlight for two viewers (4 eyes)
 - Arbitrary position in the viewing volume
 - Clear image without ghosting
Conclusions & Future work

• A novel and efficient 3D calibration method for different types of multi-view autostereoscopic 3D displays
 - Consider from the user-end to reconstruct the relationship between the user and display
 - Utilizing the gray-code patterns to accelerate the capturing process
 - Tested the universal method in two different types of 3D displays and verified this efficient calibration method

• Future work
 - Add a user-tracking module to enable the display render in real-time
 - Reduce the number of captured images with some deep-learning methods to improve the capturing process
Thanks for your kind attention!