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Motivation T Human Motion Analysis

Sports Analysis
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Introduction - Action Recognition

To classify the types of action when given a video sequence

Floor
Gymnastics

Javelin Throw

Datasets consist of large diversity and variation of realistic action videos,
such as: body motion, sports, human-object interaction.
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Action Recognition Literature

Approach

Description

Multi-stream CNN

To capture spatial and temporal features in separate
CNN before combining them to train a classifier.

3D CNN Directly extract both spatial and temporal features
across fixed number of video frames.
RNN/ LSTM Able to learn temporal features over a long sequence

of video, and able to predict future motion.

CNN with additional
information (pose, body
parts)

Require pre-processing of body pars detection/ pose
estimation before feature extraction, more robust to
error.

Unsupervised approach

Can apply RNN/ clustering/ other approaches to leart
motion features and identify keyframes.
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{C} 3D convolution

Tran, D., et al. Learning spatiotemporal features with 3d convolutional networks. in Computer Vision (ICCV), 2015 IEEE
International Conference on. 2015. IEEE.
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Multi-stream CNNSs

Spatial stream ConvNet
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Figure 1: Two-stream architecture for video classification.

Simonyan K. and A. Zisserman. Twestream convolutional networks for action recognition in
videos. in Advances in neural information processing systems. 2014.
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Wang, L., Y.Qiao, and X. Tang. Action recognition with trajectornpooled deep-
convolutional descriptors. in Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015.
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Figure 2: Our temporal linear encoding applied to the de-
sign of two-stream ConvNets [24]: spatial and temporal net-
works. The spatial network operates on RGB frames, and
the temporal network operates on optical flow fields. The
features maps from the spatial and temporal ConvNets for
multiple such segments are aggregated and encoded. Fi-
nally, the scores for the two ConvNets are combined in a
late fusion approach as averaging. The ConvNet weights
for the spatial stream are shared and similarly for the tem-
poral stream.

Diba, A., V. Sharma, and L. VarGool. Deep temporal linear
encoding networks. in Computer Vision and Pattern
Recognition. 2017.
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3D CNN
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Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer.

Ji, S., et al., 3D convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and mazh
intelligence, 2013. 35(1): p. 221231.

3x3x3 flter

t € {16, 20, 40, 60, 80, 100} frames

|
,
/ | |J ﬁ ) & :os 2048#’:’355&5 ’,:’ )
rd

ey ® o s
N o ,fP ,.;;b , ’o' S
L
0 &, S
rd

o,
/ 58x58xt 29%29 xt 14x14x[t/2]  7x7x[t/4] 3x3x[t/8] 1x1x[t/16] _‘," r
rd
T/

s
P
: input convl conv2 conv3 convd convs  fcé fc7 fcd g

Fig. 2. Network architecture. Spatio-temporal convolutions with 3x3x3 filters are applied in the first 5 layers of the network. Max pooling and ReLU are
applied in between all convolutional layers. Network input channels C'1...C'k are defined for different temporal resolutions ¢ € {20, 40, 60, 80, 100}
and either two-channel motion (flow-x, flow-y) or three-channel appearance (R, G, B). The spatio-temporal resolution of convolution layers decreases

with the pooling operations.

Varol, G., |. Laptev, and C. Schmid.ong-term temporal convolutions for action recognitionlEEE transactions on pattern analysis and
machine intelligence, 2018. 40(6): p. 15101517.
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Hybrid RNNs/ LSTMs
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Fig. 3. An overview of our two-steps neural recognition scheme
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Workshop on Human Behavior Understanding. 2011. Springer.

Baccouche, M., et al. Sequential deep learning for human action recognition. in International
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Figure 1: Overview of our approach.

Yue-HeiNg, J., et al. Beyond short snippets: Deep networks for video classification. in
Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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Combination of approaches

a) LSTM b) 3D-ConvNet c) Two-Stream d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
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Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of
neighboring frames of the video.
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Carreira, J. and A. Zisserman (2017). Quovadis, action recognition? a new model and the kinetics dataset. Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, IEEE.
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Limitations & Proposed Solutions

1) Dense sampling of consecutive frames
2 Redundant information

Sparse sampling strategy? Divide video into multiple

segments

2) Prediction based on local dynamics

2 fails to distinguish similar local motions that come
from different action sequences

Features aggregatior? represent local dynamics based

on global context
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Limitations & Proposed Solutions

3) Multi-stream approaches require pre
processing to obtain optical flow/ motion

trajectories

Single stream network:
- Only takes RGB frames as input
- Extend 2D ConvNetsto capture spatio-temporal

features
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Proposed Framework

Video 3D Conv & Class

2D ConvNets Spatial features Pooling scores

Ourframeworkof Spatictemporal AggregatiorNetwork

All segmentssharethe samenetwork weights
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Spatio-temporal Features

2D ConvNetsarchitecture

Convolution layers

Fully-connected layers
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Proposed architecture

2D ConvNets Spatial features 3D Conv &
Pooling

Video frames
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Features Aggregation

Elementwise

Spatictemporal features multiplication
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Experiments

+ Implementation details:
2 Dataset UCF101 (13320 videos)
2 Divide video into 3 segments

2 Randomly sample 3 consecutive frames from
each segment

2 Adopt pre-trained BN-Inception model as
Initialization
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Experiment 1

1) Architecture Search? 3D Convolution layer = —

- Spatial output of single frame from BN-Inception (1024 x 7 x 7) T
- Concatenate features of 3 consecutive frames (1024 x 3 x 7 x 7)
Layer Kernel size 1 Kernel size 3 Kernel size 5
3D (c p p)x O 0O O X O L U X
Convolution 0C W 0C W 0C W

cuvao CLag CL o

VPG LPQC LPQG

pmmcTt pmmcTt pmmcTt
3D Pooling P X X mMax| p L U max|(p o 0) max

pool pool pool
Classification
I Dropout 0.8, 101-D fully-connected layer
ayer
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Experiment 1 - results

Number of kernels . . :
Kernel size 1 Kernel size 3 Kernel size 5
Top-1 acc (%) | Top-5 acc (%)| Top-1 acc (%) | Top-5 acc (%) [ Top-1 acc (%) | Top-5 acc (%)
128 63.31 86.55 55.01 84.09 48.32 82.53
256 75.97 94.34 69.84 90.67 60.51 88.55
512 78.77 94.77 75.73 93.66 72.24 92.18
1024 80.60 95.45 78.85 94.79 76.69 94.71
Ly T ey o] = Wiiae
g 40 4 ; 40 § 40 1

Epoch

(a) 3D convolution (3 x 1 x 1) x 1024 filters

(b) 3D convolution (3 x 3 x 3) x 1024 filters

Epoch

Epoch

(c) 3D convolution (3 x5 x 5) x 1024 filters

3D convolution kernel (3 x 1 x 1) x 1024 filters achieved
best performance.
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Experiment 2 - results

2) Features aggregation

Model Local spatiotemporal features Aggregated features
Top-1 acc (%) Top-5 acc (%) Top-1 acc (%) Top-5 acc (%)
Resnet18 77.69 94.55 80.02 95.37
Resnet34 82.10 95.88 83.69 96.46
Densenet121 78.40 95.37 83.64 96.30
Densenet169 79.91 95.19 83.61 96.56
BN-Inception 80.60 95.45 83.08 96.48
(a) Densenet-121 with local spatio- (b) Densenet-121 with aggregated spatio-

temporal features

temporal features

Aggregated features showed improved accuracy of 2 5%
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